Structures, Energetics, and Chemical Reactions of Anions Derived from Cyclooctatetraene

Shuji Kato, Roustam Gareyev, Charles H. DePuy, and Veronica M. Bierbaum*
Contribution from the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215

Received July 31, 1997

Abstract

Structures, energetics, and reactions of anions derived from cyclooctatetraene $\left[\mathrm{C}_{8} \mathrm{H}_{8}{ }^{-}(\mathbf{1}), \mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}\right.$ (2α), and $\left.\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\mathbf{3})\right]$ have been studied using the selected ion flow tube (SIFT) technique and molecular orbital (MO) calculations. Radical anions $\mathbf{1}$ and $\mathbf{3}$ undergo electron detachment upon collisional excitation with helium whereas anion 2α undergoes a remarkable rearrangement to an isomeric species, $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(\mathbf{2} \beta)$. The anion 2α is not a vinylic species but rather a novel structure incorporating a π-electronic system and an allenic moiety within the eight-membered ring. The anion 2β is a relatively stable [3.3.0] bicyclic species with a proton affinity and electron binding energy very similar to those for cyclopentadienide ion. The molecular structures are predicted and the mechanisms of isomerization are elucidated using MO calculations. Bimolecular reactions of these anions are thoroughly examined with $\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{COS}, \mathrm{CS}_{2}$, and O_{2}. The reactivity of 2α is interpreted in terms of the high proton affinity and the strain of the allenic bond. Anion 3 exhibits a remarkable reaction with NO to yield CN^{-}. The adiabatic electron affinity of cyclooctatetraene has been unambiguously determined as $0.55 \pm 0.02 \mathrm{eV}$ from equilibrium measurements with the SIFT technique. Heats of formation for the anions and their corresponding neutrals, along with the homolytic $\mathrm{C}-\mathrm{H}$ bond dissociation energies for the conjugate acids, have also been determined.

Introduction

Conformational changes in 1,3,5,7-cyclooctatetraene (COT) and its substituted derivatives have been the subject of considerable interest for several decades. The COT molecule is a tublike, eight-membered ring with alternating double bonds, and its structural flexibility affords a variety of dynamic processes: ring inversion, bond shifting, and valence isomerization. ${ }^{1,2}$ Many kinetic and thermodynamic parameters have been studied for COT and substituted COTs with the goal of addressing some of the central questions in physical organic chemistry, such as the resonance energy for a Hückel antiaromatic $4 n$ system. ${ }^{1,2}$

Relatively little is known, however, about the structures and energetics of anionic species derived from COT. This category includes a radical anion of COT [COT $\left.{ }^{-}(\mathbf{1})\right]$, which is one of the first open-shell annulenes observed experimentally, and its deprotonated and dehydrogenated anions $\left[\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \alpha)\right.$ and $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}$(3)]. For the radical anion 1, the value of the electron

2α

3
binding energy (EBE) has been controversial for many years. ${ }^{3-5}$ A molecular orbital (MO) study confirmed the structure of

[^0]COT $^{-}$to be planar, ${ }^{6}$ far different from that of neutral COT. The very large conformational change between COT and COT ${ }^{-}$ has made the EBE difficult to determine. On the other hand, this conformational change provides an opportunity for accessing the transition state of COT ring inversion by electron detachment of $\mathrm{COT}^{-} .5$ In relation to 1 and COT, structures of 2α (ref 7), 3 (ref 8), and their detached neutral species have been studied using photoelectron spectroscopy (PES) and MO calculations. In a recent communication, we have shown that these species have intriguing structures; anion 2α and its detached neutral have strained allenic moieties ${ }^{7}$ whereas radical anion 3 and its detached neutral have strained triple bonds, ${ }^{8}$ embedded in the ring environments. In addition, anion 2α has a novel π-electron configuration. ${ }^{7}$ We have combined the selected ion flow tube (SIFT) technique, which provides access to adiabatic processes of these anions at thermal energy, with PES and MO calculations to determine a complete set of thermochemical parameters, i.e., electron affinities (EA), acidities ($\Delta H_{\text {acid }}$), and $\mathrm{C}-\mathrm{H}$ bond dissociation energies (BDE), for COT and the series of neutrals derived from COT. ${ }^{7}$

Anionic chemistry of large ring systems has not been extensively studied in the gas phase. The structures of these anions stimulate an interest in their chemical reactions. Novel unimolecular and bimolecular processes may be anticipated from the greater number of degrees of freedom of motion and the strained multiple bonds embedded in the ring structures. The

[^1]SIFT instrument not only allows studies on bimolecular thermal energy chemistry of $\mathbf{1}, \mathbf{2} \alpha$, and $\mathbf{3}$ but can also be used for exploring unimolecular processes [collision-induced dissociation (CID) and isomerization] by utilizing its capability of characterizing the chemical reactivities of daughter species in the reaction flow tube.

This paper is a continuation of our previous work ${ }^{7}$ on the structures and energetics of eight-membered ring species, $\mathrm{C}_{8} \mathrm{H}_{n}$ and $\mathrm{C}_{8} \mathrm{H}_{n}{ }^{-}(n=6,7,8)$. Along with the thermochemical properties, we focus on the reactivities of these anions. We demonstrate a novel, collision-induced isomerization of $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ (2α) to $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \beta)$ upon SIFT injection of 2α at elevated kinetic energies (KE) and collision with helium.

The isomerization mechanism is elucidated using MO calculations. Chemical reactions of $\mathbf{1}, \mathbf{2} \alpha, \mathbf{2} \beta$, and $\mathbf{3}$ with $\mathrm{NO}, \mathrm{NO}_{2}$, $\mathrm{SO}_{2}, \mathrm{COS}, \mathrm{CS}_{2}$, and O_{2} are studied, and several novel reactions are reported.

Experimental Section

This section presents an overview of the experimental approach. Some of the details that are specific to each measurement will be described later with the results.

Reactions were studied at room temperature with the tandem flowing afterglow-selected ion flow tube (FA-SIFT) instrument, which has been described in detail elsewhere. ${ }^{9}$ Anions were produced in the source flow tube at a helium pressure of 0.25 Torr. The $\mathrm{C}_{8} \mathrm{H}_{8}^{-}(\mathbf{1})$ ions were generated by electron attachment to COT while $\mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}(2 \alpha)$ and $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}$ (3) ions were formed by reactions of COT with HO^{-}and O^{-}, respectively. COT (Aldrich, 98%) was purified by distillation before use. Ions were selected by a quadrupole mass filter and injected through an orifice into the reaction flow tube maintained at 0.48 Torr of helium pressure. The SIFT injection energy, which is defined as the potential difference between the source flow tube and the injection orifice, was typically 20 eV for experiments with $\mathbf{1}, \mathbf{2} \alpha$, and $\mathbf{3}$. In collision-induced excitation experiments, the SIFT injection energy was varied by changing the potential on the injection orifice. The ion 2β was produced by injecting 2α at higher injection energies, typically at $\sim 40 \mathrm{eV}$ [at these higher energies we also observed CID of 2α to form $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\gamma)$, which has a different reactivity than $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}$(3)]. Injected ions were reacted with neutral gases added through multiple reactant inlets located along the reaction flow tube. An extra neutral inlet is attached immediately after the SIFT injection orifice and before the downstream reactant inlets. This inlet was used in experiments in which injected ions were pretreated with different gases before being subjected to reactions of interest in the flow tube. Parent and product ions were analyzed with a detection quadrupole mass filter at the end of the flow tube.

In reaction rate measurements, the multiple reactant inlets were used to vary the reaction distance in the flow tube. Absolute reaction rate constants were measured by varying the distance while adding a constant amount of reactant through each inlet. Straight lines were usually observed in semilogarithmic plots of parent ion counts vs the reaction distance, and the rate constants were obtained from the slope of the signal decay. Linear plots may not be observed when the parent ion is a mixture of isomers which react at different rates. For example, 2α is reactive with $\mathrm{CH}_{3} \mathrm{OH}$ or NO whereas 2β is not. Significantly curved decay plots were observed for $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(\mathbf{2} \alpha, 2 \beta)$ when excess amounts of these reactants were added. Nevertheless, rate constants
(9) Van Doren, J. M.; Barlow, S. E.; DePuy, C. H.; Bierbaum, V. M. Int. J. Mass Spectrom. Ion Processes 1987, 81, 85-100.
for 2α were accurately measured even in the presence of $\mathbf{2} \beta$. First, an asymptotic rate constant, k^{\prime}, was obtained from the initial slope in the curved kinetics plot. This was achieved by reducing the reactant concentration and observing the initial part of the decay plot. The rate constant for 2α was then derived using the relation $k=k^{\prime} / f_{0}$, where f_{0} is the initial fraction of $2 \alpha\left[=[2 \alpha]_{0} /\left([2 \alpha]_{0}+[2 \beta]_{0}\right)\right]$. This fraction was determined by adding a sufficient amount of methanol to selectively remove 2α. The error limits are usually $\sim 10 \%$ for these measurements. When both 2α and 2β were reacting, we added a fixed amount of reactant from a fixed inlet while varying the injection energy to alter the $[2 \alpha]_{0} /[2 \beta]_{0}$ ratio and measuring the total depletion of $\mathbf{2 \alpha}+\mathbf{2} \beta$. This measurement provides relative reaction rates for 2α and 2β. These relative rates were converted to absolute rates by comparison with reference reactions (with measured absolute rate constants) that were examined under the same reactant conditions. Rate constants measured in this way will have larger errors ($\sim 30 \%$) and are reported without error limits in the text.

The EBEs of $\mathbf{2} \alpha($ ref 7) and $\mathbf{3}$ (ref 8) have been recently measured using PES. The EBE for $\mathbf{1}$ (or adiabatic electron affinity of COT) is difficult to obtain from PES measurements because of the extremely small Franck-Condon overlap due to the very large conformational change upon transforming COT^{-}to COT. Instead in the present study, we determined $\operatorname{EBE}(\mathbf{1})$ from measurements of the equilibrium constant for $\mathrm{COT}+\mathrm{O}_{2}^{-} \rightleftharpoons \mathrm{COT}^{-}+\mathrm{O}_{2}$ using the well-established value (0.451 $\mathrm{eV})^{10}$ of the electron affinity of O_{2}. Two separate experiments were conducted to determine the equilibrium constant. One experiment involves measurements of the forward and reverse reaction rate constants for the electron-transfer equilibrium. The other involves a direct determination of the equilibrium constant by SIFT-injecting COT^{-}or $\mathrm{O}_{2}{ }^{-}$into the flow tube containing a COT/ O_{2} mixture (~ 1 : 100) while varying the total $\mathrm{COT} / \mathrm{O}_{2}$ density to establish equilibrium. In the latter experiment the detection conditions were adjusted so that mass discrimination between COT^{-}and $\mathrm{O}_{2}{ }^{-}$ions was minimal. The electron-transfer reactions of anions were examined with $\mathrm{O}_{2}, \mathrm{CS}_{2}$ (EA $=0.51 \mathrm{eV}$), $\mathrm{SO}_{2}(1.107 \mathrm{eV}), 3-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$ [1-nitro-3-(trifluoromethyl)benzene, 1.41 eV$]$, and $\mathrm{NO}_{2}(2.273 \mathrm{eV}) .{ }^{11}$

Proton affinities (PAs) of ions were measured using proton-transfer reactions with a series of acids. The proton affinity of 2α was precisely determined by measuring the forward and reverse reaction rate constants for the equilibrium $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \alpha)+\mathrm{CH}_{3} \mathrm{OH}=\mathrm{C}_{8} \mathrm{H}_{8}+\mathrm{CH}_{3} \mathrm{O}^{-}$. For other ions, proton affinities were determined from bracketing experiments using oxygen and sulfur acids; ${ }^{11} \mathrm{H}_{2} \mathrm{O}\left(\Delta H_{\text {acid }}=390.8 \mathrm{kcal} / \mathrm{mol}\right)$, $\left.\mathrm{CH}_{3} \mathrm{OH}(380.5 \mathrm{kcal} / \mathrm{mol}), \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(377.4 \mathrm{kcal} / \mathrm{mol}),\left(\mathrm{CH}_{3}\right)\right)_{3} \mathrm{COH}(374.5$ $\mathrm{kcal} / \mathrm{mol}), \mathrm{CHF}_{2} \mathrm{CH}_{2} \mathrm{OH}(366.4 \mathrm{kcal} / \mathrm{mol}), \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(361.9 \mathrm{kcal} / \mathrm{mol})$, $\mathrm{CH}_{3} \mathrm{SH}(356.8 \mathrm{kcal} / \mathrm{mol}), \mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{CH}_{2} \mathrm{OH}(355.4 \mathrm{kcal} / \mathrm{mol}),\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSH}$ ($352.5 \mathrm{kcal} / \mathrm{mol}$), $\mathrm{H}_{2} \mathrm{~S}(351.1 \mathrm{kcal} / \mathrm{mol}), \mathrm{CH}_{3} \mathrm{COOH}(348.7 \mathrm{kcal} / \mathrm{mol})$, $\mathrm{HCOOH}(345.1 \mathrm{kcal} / \mathrm{mol})$, and $\mathrm{CHF}_{2} \mathrm{COOH}(330.8 \mathrm{kcal} / \mathrm{mol})$. The hydrogen-deuterium (H/D) exchange reactions of ions were examined using deuterated reagents, $\mathrm{D}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OD}, \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OD}$, and $\mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{CH}_{2}{ }^{-}$ OD. When ions 2β and $\mathbf{3}$ undergo H / D exchange with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OD}$, more highly exchanged products never dominate the spectrum, presumably because of a clustering loss that takes place at each collision with this reagent. In experiments with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OD}$, therefore, highly exchanged products were carefully studied while monitoring the specific masses, optimizing the reagent concentration, and accumulating signals for longer periods ($10-100 \mathrm{~s}$).

Reactivities of ions were examined with $\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{COS}, \mathrm{CS}_{2}$, and O_{2}. Reactions of $\mathbf{2 \alpha}$ and $\mathbf{2} \beta$ are relatively difficult to examine because these ions are usually present in the flow tube as a mixture, the relative abundance depending on the injection energy. Also, the $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\gamma)$ ion is present at higher injection energies. Several methods and quenching reactions were employed to distinguish the reactions of each ion. For the reactions of 2α, the ion was generated in high purity ($>99 \%$) in the reaction flow tube by the reaction of COT with injected

[^2]Table 1. Thermochemical Data for $\mathrm{C}_{8} \mathrm{H}_{n}{ }^{-}$and $\mathrm{C}_{8} \mathrm{H}_{n}$

A^{-}	EBE (eV)	$\mathrm{PA}(\mathrm{kcal} / \mathrm{mol})$	$\Delta H_{\mathrm{f}}\left(\mathrm{A}^{-}\right)(\mathrm{kcal} / \mathrm{mol})$	$\Delta H_{\mathrm{f}}(\mathrm{A})(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{BDE}(\mathrm{AH})(\mathrm{kcal} / \mathrm{mol})$
$\mathrm{C}_{8} \mathrm{H}_{8}{ }^{-}(\mathbf{1})$	0.55 ± 0.02	349.9 ± 4.1	58.4 ± 0.6	71.1 ± 0.3^{a}	49.1 ± 4.1
$\mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}(\mathbf{2 \alpha})$	1.091 ± 0.008^{b}	381.3 ± 2.3	86.8 ± 2.3	112.0 ± 2.3	93.0 ± 2.3
$\mathrm{C}_{8} \mathrm{H}_{7}^{-}(\mathbf{2} \beta)$	1.9 ± 0.5^{d}	354.7 ± 5.1	33.0 ± 2.3^{e}	$76 \pm 15^{f, g}$	84 ± 18^{g}
$\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\mathbf{3})$	1.044 ± 0.008^{c}	357.2 ± 8.3	103.6 ± 8.6	127.7 ± 8.6	67.8 ± 8.3

${ }^{a}$ Reference 11. ${ }^{b}$ Reference 7. ${ }^{c}$ Reference 8. ${ }^{d}$ Bracketed with $3-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}(\mathrm{EA}=1.41 \mathrm{eV})$ and $\mathrm{NO}_{2}(2.273 \mathrm{eV})$. ${ }^{e}$ Derived from the experimental value for $\Delta H_{\mathrm{f}}(\mathbf{2} \alpha)$ and the calculated energy difference between 2α and $\mathbf{2} \beta$ (see text). ${ }^{f}$ Based on the estimated value for $\Delta H_{\mathrm{f}}(\mathbf{2} \beta) .{ }^{g}$ The large errors mainly arise from the uncertainties in EBE obtained by bracketing measurements.
HO^{-}which had been formed in the source flow tube. The 2α ions were then reacted with neutral gases added downstream. The reactivity of 2β was examined by selectively quenching 2α with $\mathrm{CH}_{3} \mathrm{OH}$ or NO before 2β was reacted with reagents of interest. Reaction products from $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\gamma)$ were distinguished by selectively quenching 2α and 2β by proton-transfer reactions with $\mathrm{H}_{2} \mathrm{~S}$ before $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\gamma)$ was reacted. Products from 2α and 2β were also examined in the absence of these additional reagents [COT for 2α and quenching reagents for 2β and $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\gamma)$] but at different injection energies ($10-40 \mathrm{eV}$), i.e., different initial abundances of $\mathbf{2 \alpha}$ and $\mathbf{2} \beta$. The observed product distributions were then compared, for consistency, with those obtained in the presence of the additional reagents.

Results

This section first describes experimental results obtained for $\mathrm{C}_{8} \mathrm{H}_{8}^{--}(\mathbf{1}), \mathrm{C}_{8} \mathrm{H}_{7}^{-}(\mathbf{2} \alpha)$, and $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}$(3). Results for $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(\mathbf{2} \beta)$, which is produced by collisional excitation of $\mathbf{2} \alpha$, are described later. Measured thermochemical data are summarized in Table 1.

Electron Binding Energy of 1. The electron binding energies (EBEs) of $\mathrm{C}_{8} \mathrm{H}_{7}^{--}(2 \alpha)$ and $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\mathbf{3})$ in their ground states have been recently measured using PES, and values of $1.091 \mathrm{eV}^{7}$ and $1.044 \mathrm{eV}^{8}$ were reported for 2α and $\mathbf{3}$, respectively.

In the present study, the EBE of $\mathbf{1}$ was determined from reaction rate measurements for both directions in the electrontransfer equilibrium COT $+\mathrm{O}_{2}^{-} \rightleftharpoons \mathrm{COT}^{-}+\mathrm{O}_{2}$. Under the experimental conditions, side reactions or clustering was not observed for reaction in either direction. The forward reaction is fairly fast, and the rate constant was measured to be 8.70 $(\pm 0.70) \times 10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$, which is close to the collision limit.

The reverse reaction was found to be relatively slow $[k=$ $1.97(\pm 0.20) \times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$]. Several different measurements were conducted to confirm the observed rate constant. Rates were measured at different injection energies for $\mathrm{COT}^{-}(5-25 \mathrm{eV})$. In some measurements methane or cyclohexane was added immediately after the SIFT injector to vibrationally quench COT^{-}. The measured rate constants were independent of these experimental conditions, suggesting that vibrationally excited COT^{-}ions do not contribute to the measured rate. In addition, the contribution of naturally abundant, isotopically labeled $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ion $\left({ }^{13} \mathrm{C}^{12} \mathrm{C}_{7} \mathrm{H}_{7}{ }^{-}\right)$, which has the same mass as COT^{-}, was found to be less than 1%. The equilibrium constant was obtained using the forward and reverse rate constants, and the electron binding energy of $\mathrm{C}_{8} \mathrm{H}_{8}{ }^{-}$ was determined as $0.55 \pm 0.02 \mathrm{eV} .{ }^{7}$

The value of $\operatorname{EBE}(\mathbf{1})$ obtained in this way was substantiated by separate, direct equilibrium measurements in which COT^{-} or $\mathrm{O}_{2}{ }^{-}$was injected into the $\mathrm{COT} / \mathrm{O}_{2}$ mixture. The same value of the equilibrium constant was measured when either reactant ion was injected. The measured equilibrium constant of $44(\pm 4)$ agrees well with the value from the rate measurements. The error bar for the $\operatorname{EBE}(\mathbf{1})$ of $\pm 0.02 \mathrm{eV}$ corresponds to a factor of 2 change in the equilibrium constant and hence is fairly conservative.

Figure 1. Kinetic plot of the loss of SIFT-injected $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ions (injection energy 20 eV) upon reaction with $\mathrm{CH}_{3} \mathrm{OH}$.

Proton Affinities and H/D Exchange Reactions of 1, 2α, and 3. Among the several acids examined, only the conservative upper and lower brackets are reported here. The COT^{-} ion (1) reacts fairly rapidly with $\mathrm{CH}_{3} \mathrm{COOH}\left(\Delta H_{\text {acid }}=348.7\right.$ $\mathrm{kcal} / \mathrm{mol}$) to produce $\mathrm{CH}_{3} \mathrm{COO}^{-}$while it does not react with $\mathrm{H}_{2} \mathrm{~S}(351.1 \mathrm{kcal} / \mathrm{mol})$, indicating that the proton affinity of $\mathbf{1}$ lies between the values of acidities for these reagents. No H/D exchange was observed between $\mathbf{1}$ and $\mathrm{D}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OD}, \mathrm{CF}_{3} \mathrm{CH}_{2^{-}}$ OD , or $\mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{CH}_{2} \mathrm{OD}$.

The $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(3)$ ion rapidly proton-abstracts from $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSH}$ $(352.5 \mathrm{kcal} / \mathrm{mol})$. Methanethiol $\left(\Delta H_{\text {acid }}=356.8 \mathrm{kcal} / \mathrm{mol}\right)$ reacts moderately fast with $3\left[k=1.0(\pm 0.1) \times 10^{-10} \mathrm{~cm}^{3}\right.$ molecule ${ }^{-1} \mathrm{~s}^{-1}$] but the formation of $\mathrm{CH}_{3} \mathrm{~S}^{-}$accounted for only $\sim 10 \%$ of the total signal loss. This suggests that the proton transfer is slightly endothermic and $\mathrm{CH}_{3} \mathrm{SH}$ may be the upper bracket. However, the proton affinity of $\mathbf{3}$ is bracketed more conservatively with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OD}$. While the reaction of 3 with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OD}$ was found to proceed primarily via disappearance of 3 presumably due to clustering, this reaction concurrently yielded H / D-exchanged $\mathrm{C}_{8} \mathrm{H}_{6-x} \mathrm{D}_{x}^{-}$products with progressively smaller amounts toward larger x. A maximum of five H / D exchanges were observed while a fully exchanged product $\left(\mathrm{C}_{8} \mathrm{D}_{6}{ }^{-}\right)$was not detected. This extensive H/D exchange between $\mathbf{3}$ and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OD}$ suggests that the PA of $\mathbf{3}$ is lower than the value of acidity for $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(361.9 \mathrm{kcal} / \mathrm{mol})$.

When $\mathrm{CH}_{3} \mathrm{OH}$ was added to SIFT-injected $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ions, two distinct components were found for $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$(Figure 1); one (defined as 2α) reacts very rapidly to produce $\mathrm{CH}_{3} \mathrm{O}^{-}$while the other (defined as 2β) is unreactive. The ratio of 2α and 2β changes dramatically upon varying the injection energy. This is clear evidence of collision-induced isomerization of $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ as detailed in the following section. The reactive component (2α) does not abstract a proton from $\mathrm{H}_{2} \mathrm{O}$, and hence the PA for 2α is smaller than $390.8 \mathrm{kcal} / \mathrm{mol}$ (acidity of $\mathrm{H}_{2} \mathrm{O}$). On the

Figure 2. Isomerization fraction of $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$as a function of SIFT injection energy. The nominal center-of-mass collision energy with helium $\left[E_{\mathrm{cm}}(\mathrm{He})\right]$ is also shown.
other hand, the value for $\mathrm{PA}(\mathbf{2} \alpha)$ is larger than $380.5 \mathrm{kcal} / \mathrm{mol}$ (acidity of $\mathrm{CH}_{3} \mathrm{OH}$). Both the forward and reverse reactions were observed for the proton-transfer equilibrium $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \alpha)$ $+\mathrm{CH}_{3} \mathrm{OH} \rightleftharpoons \mathrm{C}_{8} \mathrm{H}_{8}+\mathrm{CH}_{3} \mathrm{O}^{-}$, and in fact, the forward reaction was faster. The forward rate constant $\left(k_{\mathrm{f}}\right)$ was measured to be $1.0(\pm 0.1) \times 10^{-9} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$. The reverse reaction, which is slightly endothermic, generated a small fraction of $\mathrm{CH}_{3} \mathrm{O}^{-} \cdot \mathrm{COT}$ clusters as a side product $(\sim 10 \%)$. After a minor correction for clustering, the reverse rate constant $\left(k_{\mathrm{r}}\right)$ was obtained as $2.6(\pm 0.3) \times 10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$. The PA of $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \alpha)$ was determined from the equilibrium constant ($\equiv k_{\mathrm{f}} / k_{\mathrm{r}}$) to be $381.3 \mathrm{kcal} / \mathrm{mol}$ by assuming that $\Delta \Delta S_{\mathrm{Rxn}}$ is negligibly small. ${ }^{7}$ Seven H / D exchange reactions readily occur for $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \alpha)$ with $\mathrm{D}_{2} \mathrm{O}$, as previously observed by Hare et al. ${ }^{12}$

Collision-Induced Excitation of $\mathbf{1}, \mathbf{2} \boldsymbol{\alpha}$, and 3. The $\mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}$ ions were usually generated by reacting COT with $\mathrm{HO}^{-}(\mathrm{PA}=$ $390.8 \mathrm{kcal} / \mathrm{mol}$) in the ion source, and then mass-selecting and injecting them into the flow tube. The ratio $[2 \alpha] /[2 \beta]$, as determined by a 2α-specific reaction with methanol, was found to change with the SIFT injection energy (Figure 2). The fraction of $\mathbf{2} \beta[\equiv[\mathbf{2} \beta] /([\mathbf{2} \alpha]+[\mathbf{2} \beta])]$ increased dramatically with increased injection energy until it approached unity at about 50 eV , indicating that an extensive collision-induced isomerization takes place from the 2α to 2β forms of $\mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}$. At higher injection energies a new CID product, $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\gamma)$, was also observed. This species has a reactivity distinctly different from that of $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(3),{ }^{13}$ and the structure and formation mechanism will be discussed elsewhere. ${ }^{14}$ The $[2 \alpha] /[2 \beta]$ ratio was unchanged when $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ions were generated in the source using other deprotonating reagents, $\mathrm{NH}_{2}{ }^{-}(\mathrm{PA}=403.7 \mathrm{kcal} / \mathrm{mol})$ or $\mathrm{CH}_{3} \mathrm{O}^{-}$($380.5 \mathrm{kcal} / \mathrm{mol}$). When $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ions were directly generated in the reaction flow tube at 300 K by the reaction of COT with SIFT-injected HO^{-}ions, the $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ions were almost exclusively in the 2α form ($>99 \%$).

Collision-induced processes for COT^{-}(1) and $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}$(3) appear to be relatively simple. Upon increasing the injection

[^3]energy, the parent ion signals for $\mathbf{1}$ and $\mathbf{3}$ decreased until they were almost totally depleted at a potential of $\sim 40 \mathrm{eV}$. The COT^{-}signal decreased more steeply than did the $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}$signal. In this energy range, no product ions were observed from 1 or 3 within the detection limits. It is likely that electron detachment is the only collision-induced process for both 1 and 3.

Reactivity of $1,2 \alpha$, and 3. Electron transfer was the only reaction observed for $\mathrm{COT}^{-}(\mathbf{1})$ with $\mathrm{NO}_{2}(\mathrm{EA}=2.273 \mathrm{eV})$, $\mathrm{SO}_{2}(1.107 \mathrm{eV}), \mathrm{CS}_{2}(0.51 \mathrm{eV})$, and $\mathrm{O}_{2}(0.451 \mathrm{eV})$. The electron-transfer reactions with NO_{2} and SO_{2} are very rapid whereas those reactions with CS_{2} and O_{2} are considerably slower. Adduct formation with NO or SO_{2} was not observed for 1.

The $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}$(3) ions react rapidly with NO_{2} and SO_{2} exclusively by electron transfer. This is consistent with the PES measurement of the EBE for $\mathbf{3}(1.044 \mathrm{eV}) .{ }^{8}$ While $\mathbf{3}$ does not form a stable adduct with $\mathrm{NO}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}^{-}\right)$, it reacts at a moderate rate with NO to produce $\mathrm{CN}^{-}\left[k=3.5(\pm 0.4) \times 10^{-11} \mathrm{~cm}^{3}\right.$ molecule ${ }^{-1} \mathrm{~s}^{-1}$]. Despite mass discrimination against detection of CN^{-}, the CN^{-}signal accounted for a large fraction ($>60 \%$) of the signal loss of $\mathbf{3}$. No reaction was observed with O_{2} or CS_{2}, but $\mathbf{3}$ reacts extremely slowly with COS to produce $\mathrm{HS}^{-} .{ }^{15}$

The $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \alpha)$ ion reacts with a variety of reactants. The reaction of 2α with SO_{2} is fast ($k=9.6 \times 10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$ s^{-1}), and several primary and secondary products were observed at $m / z 64\left(\mathrm{SO}_{2}^{-}\right), m / z 65\left(\mathrm{HSO}_{2}{ }^{-}\right), m / z 167\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{2}^{-}\right)$and $m / z 231\left[\mathrm{C}_{8} \mathrm{H}_{7}\left(\mathrm{SO}_{2}\right)_{2}{ }^{-}\right]$with a typical abundance of $65 \%, 9 \%$, 14%, and 5%, respectively. ${ }^{16}$ Smaller amounts of $\mathrm{m} / \mathrm{z} 119$ $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}^{-}, \sim 2 \%\right)$ and $m / z 183\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{3}^{-}, \sim 4 \%\right)$ were also observed. The formation of HSO_{2}^{-}was confirmed by a separate experiment in which SIFT-injected $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(\mathbf{2} \alpha, 2 \beta)$ directly reacts with SO_{2} in the absence of a possible hydrogen donor, COT (2β does not produce $\mathrm{HSO}_{2}{ }^{-}$from SO_{2} as described later). The rapid formation of SO_{2}^{-}is consistent with the measured electron binding energy of $2 \alpha(1.091 \mathrm{eV}) .{ }^{7}$ The reaction with NO_{2} proceeds only via rapid electron transfer, which is also consistent with the EBE of $\mathbf{2} \alpha$. The $\mathbf{2} \alpha$ ion does not react with O_{2}.

The ion 2α reacts with CS_{2} and COS less rapidly than with SO_{2}, the rate constants being 5.3×10^{-10} and $1.5 \times 10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$, respectively. The reaction with CS_{2} produces ionic products at $m / z 33\left(\mathrm{HS}^{-}\right), m / z 57\left(\mathrm{HCCS}^{-}\right), m / z 135$ $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~S}^{-}\right)$, and $m / z 179\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{CS}_{2}{ }^{-}\right)$with an abundance of 18%, $7 \%, 72 \%$, and $3 \%,{ }^{17}$ and that with COS produces $m / z 33\left(\mathrm{HS}^{-}\right)$, $\mathrm{m} / \mathrm{z} 135\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~S}^{-}\right)$, and $\mathrm{m} / \mathrm{z} 163\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{COS}^{-}\right)$with an abundance of $31 \%, 9 \%$, and 60%, respectively.

The reaction of 2α with NO primarily leads to loss of parent ion signal, presumably due to associative electron detachment. In addition, the 2α ion reacts with NO via sequential adduct formation at $m / z 133\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}^{-}\right)$and $m / z 163\left[\mathrm{C}_{8} \mathrm{H}_{7}(\mathrm{NO})_{2}{ }^{-}\right]$, along with minor production of $\mathrm{CN}^{-}(\sim 30 \%$ of the total yield of adducts). Notably, the total rate of loss for 2α [$k_{\text {total }}=1.1$ $(\pm 0.1) \times 10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$] is independent of the helium pressure in the flow tube ($0.42-0.60$ Torr), and adduct formation accounts for only $\sim 10 \%$ of the total loss of 2α.

Characterization of $\mathbf{C}_{8} \mathbf{H}_{7}^{-}(\mathbf{2 \beta})$. In contrast to 2α, the 2β ion does not react with NO at a measurable rate. Neither a

[^4]

Figure 3. Gas-phase proton affinity scale for $\mathrm{C}_{8} \mathrm{H}_{n}{ }^{-}(n=6,7,8)$ and related anions.
decrease of the parent signal nor formation of adducts was observed for 2β upon addition of NO in the flow tube.

The EBE of 2β was bracketed with $\mathrm{NO}_{2}(\mathrm{EA}=2.273 \mathrm{eV})$ and 1-nitro-3-(trifluoromethyl)benzene (NTB; 1.41 eV). While ion 2β reacts very rapidly with NO_{2} to produce a sole product, $\mathrm{NO}_{2}{ }^{-}$, no electron transfer takes place between the 2β component of the isomer mixture $(\mathbf{2} \alpha, \mathbf{2} \beta, \gamma)$ and NTB. The proton affinity of 2β was bracketed with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSH}$ and $\mathrm{CH}_{3} \mathrm{SH}$. Before the reaction, 2α was selectively quenched with NO. While no reaction was observed with $\mathrm{CH}_{3} \mathrm{SH}, \mathbf{2} \beta$ abstracts a proton from $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSH}$ fairly rapidly. The H/D exchange of 2β was observed with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OD}$. It was increasingly difficult to observe more highly exchanged products possibly because of the competitive clustering reaction as discussed above for ion 3. Nevertheless, an exchange of up to five hydrogens was observed, and there was no evidence for further exchange.

The ion $\mathbf{2} \beta$ is generally less reactive than 2α. It does not react with COS or O_{2} and reacts only slowly with CS_{2} to produce the adduct $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{CS}_{2}{ }^{-}$. The rate constant for the reaction of 2β with CS_{2} is only $\sim 4 \%\left(\sim 2 \times 10^{-11} \mathrm{~cm}^{3}\right.$ molecule $\left.{ }^{-1} \mathrm{~s}^{-1}\right)$ of that for the $2 \alpha+\mathrm{CS}_{2}$ reaction. While the 2β ion does not electron-transfer to SO_{2}, it forms a monoadduct at $\mathrm{m} / \mathrm{z} 167$ $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{2}^{-}\right)$. The $\mathrm{HSO}_{2}{ }^{-}$ion, which is a product of the reaction of 2α with SO_{2}, was not observed. The reaction of 2β with SO_{2} is slower than that for 2α, i.e., $\sim 24 \%\left(k=2.3 \times 10^{-10}\right.$ cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$) of the rate of the $2 \alpha+\mathrm{SO}_{2}$ reaction.

Discussion

Thermochemical Properties of $\mathrm{C}_{8} \mathrm{H}_{n}{ }^{-}$and $\mathrm{C}_{8} \mathrm{H}_{n}$. Measured values for EBE and PA are tabulated in Table 1. The values of proton affinities indicate that 2α is far more basic than other anions. Figure 3 illustrates the proton affinity scale for the anions in this study and other related anions. Although the proton affinity of $2 \alpha(381.3 \mathrm{kcal} / \mathrm{mol})$ is distinctly higher than those of $\mathbf{1}, \mathbf{2} \beta$, and $\mathbf{3}$, it is significantly lower than that

Figure 4. Energy level diagram for $\mathrm{COT}^{-}(\mathbf{1}), \mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}(\mathbf{2} \alpha), \mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}$ (3), and related neutrals. Numbers in brackets represent the experimentally determined heats of formation (300 K , in $\mathrm{kcal} / \mathrm{mol}$).
expected for typical vinylic anions $\left[\mathrm{PA}\left(\mathrm{CH}_{2}=\mathrm{CH}^{-}\right)=409.4\right.$ $\mathrm{kcal} / \mathrm{mol}$ or $\mathrm{PA}($ phenyl $)=400.7 \mathrm{kcal} / \mathrm{mol}]$. Instead, $\mathrm{PA}(2 \alpha)$ is closer to $\operatorname{PA}($ allyl $)(=390.8 \mathrm{kcal} / \mathrm{mol})$ and $\mathrm{PA}($ benzyl $)(=380.8$ $\mathrm{kcal} / \mathrm{mol})$. This suggests that the deprotonated anion 2α is not vinylic but is additionally stabilized by delocalizing the unpaired electron over the π-system, similarly to the deprotonated anions derived from propene and toluene. The structures of 2α and $\mathbf{2} \beta$ given in Figure 3 are discussed in the next section.

The EBE and PA obtained for the $\mathrm{C}_{8} \mathrm{H}_{n}{ }^{-}$anions can be used to calculate the heats of formation $\left(\Delta H_{\mathrm{f}}\right)$ of $\mathrm{C}_{8} \mathrm{H}_{n}{ }^{-}\left(\mathrm{A}^{-}\right)$and $\mathrm{C}_{8} \mathrm{H}_{n}$ (A). First, the heats of formation of $\mathrm{C}_{8} \mathrm{H}_{n}$ and $\mathrm{C}_{8} \mathrm{H}_{n}{ }^{-}$are related by

$$
\begin{equation*}
\Delta H_{\mathrm{f}}\left(\mathrm{C}_{8} \mathrm{H}_{n}\right)=\Delta H_{\mathrm{f}}\left(\mathrm{C}_{8} \mathrm{H}_{n}^{-}\right)+\operatorname{EBE}\left(\mathrm{C}_{8} \mathrm{H}_{n}^{-}\right) \tag{2}
\end{equation*}
$$

The $\Delta H_{\mathrm{f}}\left(\mathrm{C}_{8} \mathrm{H}_{n}\right)$, in turn, is used to derive the heat of formation of the $\mathrm{C}_{8} \mathrm{H}_{n-1}^{-}$ion

$$
\begin{align*}
& \Delta H_{\mathrm{f}}\left(\mathrm{C}_{8} \mathrm{H}_{n-1}{ }^{-}\right)=\Delta H_{\mathrm{f}}\left(\mathrm{C}_{8} \mathrm{H}_{n}\right)+ \mathrm{PA}\left(\mathrm{C}_{8} \mathrm{H}_{n-1}^{-}\right)- \\
& \operatorname{IP}(\mathrm{H})-(1 / 2) \operatorname{BDE}\left(\mathrm{H}_{2}\right) \tag{3}
\end{align*}
$$

where $\mathrm{PA}\left(\mathrm{C}_{8} \mathrm{H}_{n-1}^{-}\right)$is equal to $\Delta H_{\text {acid }}\left(\mathrm{C}_{8} \mathrm{H}_{n}\right)$ by definition. For the series of $\mathbf{1}, \mathbf{2} \alpha, \mathbf{3}$, and their neutrals, a reported value for $\Delta H_{\mathrm{f}}(\mathrm{COT})(71.1 \pm 0.3 \mathrm{kcal} / \mathrm{mol})^{11}$ is used as the reference to calculate the heats of formation for $\mathrm{C}_{8} \mathrm{H}_{n}{ }^{-}$and $\mathrm{C}_{8} \mathrm{H}_{n}$ (Figure 4). No reported reference value is available for the family of $\boldsymbol{2} \beta$. Instead, we estimate the heat of formation for $\mathbf{2} \beta$ from the value of $\Delta H_{\mathrm{f}}(\mathbf{2} \alpha)$ derived above and the MO energy difference between 2α and $2 \beta(53.8 \mathrm{kcal} / \mathrm{mol})$, and use it for the reference value $\left[\Delta H_{\mathrm{f}}(\mathbf{2} \beta)=33.0 \mathrm{kcal} / \mathrm{mol}\right]$ (Figure 5). Details of the MO calculation will be described in the following section. The thermochemical values obtained are summarized in Table 1. It is readily seen that the heat of formation increases in going from 1 to 2α to 3 , for both the ion and neutral. The 2β ion is considerably more stable than the 2α isomer.

In addition, the homolytic $\mathrm{C}-\mathrm{H}$ bond dissociation energy (BDE) of $\mathrm{C}_{8} \mathrm{H}_{n}$ neutral (AH , the conjugate acid of A^{-}) is obtained from

Figure 5. Energy level diagram for the $\mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}(2 \beta)$ family. Numbers in brackets represent heats of formation (300 K , in $\mathrm{kcal} / \mathrm{mol}$) as determined from both experiments and the MO energy difference between $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(\mathbf{2} \alpha)$ and $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(\mathbf{2} \beta)$.
$\operatorname{BDE}\left(\mathrm{C}_{8} \mathrm{H}_{n}\right)=\mathrm{PA}\left(\mathrm{C}_{8} \mathrm{H}_{n-1}^{-}\right)+\operatorname{EBE}\left(\mathrm{C}_{8} \mathrm{H}_{n-1}{ }^{-}\right)-\operatorname{IP}(\mathrm{H})$
The BDE for $\mathrm{C}_{8} \mathrm{H}_{8}$ (=COT, $\left.93.0 \mathrm{kcal} / \mathrm{mol}\right){ }^{7}$ which is considerably smaller than $\mathrm{C}-\mathrm{H}$ bond energies in typical sp^{2} bonds, ${ }^{18}$ is understood in terms of the stability of the $\mathrm{C}_{8} \mathrm{H}_{7}$ species due to delocalization of the radical electron over the π-system. Equations $2-4$ combine 0 and 300 K quantities and do not include thermal correction terms. These terms, however, are always less than $0.3 \mathrm{kcal} / \mathrm{mol}$ (ref 22) and thus do not change the derived values in Table 1; the reported error bars include the small error which is introduced.

Collision-Induced Isomerization of $2 \alpha \rightarrow \mathbf{2 \beta}$. Proton abstraction from COT yields a stable product, $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \alpha)$. The ion 2α isomerizes to $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \beta)$ upon injection into the flow tube and collision with helium, the probability of isomerization depending on the injection energy. We used the MP2/6-31+G* level of theory to optimize the structures of $2 \alpha, 2 \beta$, and the relevant intermediate and transition states (Figure 6). ${ }^{23}$ Energies are calculated using the MP2/6-31 $+\mathrm{G}^{*}$ or semiempirical PM3 level of theory (Table 2). Corrections for zero-point energy (ZPE) and thermal energy (at 300 K) are incorporated into the calculations.
(18) The BDE (ethylene) and $\operatorname{BDE}($ benzene) are $111.2 \mathrm{kcal} / \mathrm{mol}$ (ref 19) and $113.5 \mathrm{kcal} / \mathrm{mol}$ (ref 20) whereas those for propene and toluene are 88.8 and $89.8 \mathrm{kcal} / \mathrm{mol}$ (ref 21), respectively.
(19) Ervin, K. M.; Gronert, S.; Barlow, S. E.; Gilles, M. K.; Harrison, A. G.; Bierbaum, V. M.; DePuy, C. H.; Lineberger, W. C.; Ellison, G. B. J. Am. Chem. Soc. 1990, 112, 5750-5759.
(20) Davico, G. E.; Bierbaum, V. M.; DePuy, C. H.; Ellison, G. B.; Squires, R. R. J. Am. Chem. Soc. 1995, 117, 2590-2599.
(21) Ellison, G. B.; Davico, G. E.; Bierbaum, V. M.; DePuy, C. H. Int. J. Mass Spectrom. Ion Processes 1996, 156, 109-131.
(22) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994, 98 , 2744-2765.
(23) Gaussian 94: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A., Gaussian, Inc., Pittsburgh, PA, 1995.

Figure 6. Structures of $\mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}$species calculated at the MP2/6-31+G* level of theory.

The vinylic $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ion ($2 \alpha^{*}$) formed by proton abstraction from COT has a tublike structure very similar to that of COT with the charge localized at the site of deprotonation. The most stable form of the eight-membered $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ring is accessed from $2 \alpha^{*}$ via a transition state (TS1) that is planar but still retains vinylic character. The optimized structure, 2α with C_{2} symmetry, is best described as a cyclic allene in a pentadienyl moiety; the $\mathrm{C}-\mathrm{C}$ bonds between C 1 and C 2 and between C 1 and C 8 are the shortest, constituting a bent allenic structure whereas the $\mathrm{C}-\mathrm{C}$ bonds from C 3 through C 7 have intermediate and similar lengths, constituting a pentadienyl moiety (Figure $7 \mathrm{a})$. The dihedral angle for $\mathrm{H} 2-\mathrm{C} 2-\mathrm{C} 8-\mathrm{H} 8$ is nearly 90°, and the bent allenic $\mathrm{C}=\mathrm{C}=\mathrm{C}$ unit as a whole is twisted by $\sim 21^{\circ}$ with respect to the $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ plane. The $220 \mathrm{~cm}^{-1}$ vibrational progression seen in the photodetachment spectrum of 2α (ref 7) corresponds to a torsional mode of the cyclic allene in which the allenic moiety $[\mathrm{H} 2-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{H} 8]$ approaches a geometry closer to planarity. The highest (negative) charge density is found on C5 and then on C3 and C7, while the negative charge on the other carbons is relatively small.

The structure 2α can be converted to a local minimum-energy [3.3.0] bicyclic structure $\left(2 \beta^{*}\right)$ by folding along the $\mathrm{C} 1-\mathrm{C} 5$ axis. This process is described as the negatively charged C 5 atom bridging transannularly toward the central allenic carbon. While the transition state (TS2) is still twisted, $\mathbf{2} \beta^{*}$ is nearly planar. The C5 in $2 \beta^{*}$ has substantial sp^{3} character, and the charge is delocalized over nearly the entire system. The global minimum-energy [3.3.0] structure, which can be ascribed to 2β, is accessed by shifting the hydrogen atom on C5 toward the adjacent carbon C 4 , via the transition state (TS3). The optimized structure for $\mathbf{2} \beta$ (Figure 7b) is planar and consists of

Table 2. Calculated Relative Energies for $\mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}$Species ($\left.\mathrm{kcal} / \mathrm{mol}\right)^{a}$

eight-membered ring			[3.3.0] bicyclic species			[4.2.0] bicyclic species			benzene species		fulvene species	
	MP2//MP2 ${ }^{\text {b }}$	PM3 ${ }^{\text {c }}$		MP2//MP2 ${ }^{\text {b }}$	PM3 ${ }^{\text {c }}$		$\mathrm{MP2} / / \mathrm{HF}^{e}$	PM3 ${ }^{\text {c }}$		PM3 ${ }^{\text {c }}$		PM3 ${ }^{\text {c }}$
$2 \alpha^{*}$	58.3	d	TS2	69.3	76.7	(TS)	d		(TS)		TS6	74.1
TS1	83.6	70.9	$2 \beta^{*}$	25.4	21.6	$2 \delta^{*}$	49.4	43.5	$2 \epsilon^{*}$	36.1	2λ	53.0
2α	53.8	46.7	TS3	38.2	47.8	TS4	66.9	78.6	TS5	79.9	TS7	81.0
			2β	$\equiv 0.0{ }^{\text {f }}$	$\equiv 0.0{ }^{\text {f }}$	2δ	28.6	23.6	2ϵ	14.5	$2 \mu^{*}$	68.2
											2μ	36.7

[^5]

Figure 7. Structures of (a) $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$(2 α) and (b) $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$(2 β) calculated at the MP2/6-31+G* level of theory. Bond lengths are in angstroms, and bond angles are in degrees. The structure of 2α has C_{2} symmetry with the $\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2$ plane twisted by $\sim 21^{\circ}$ with respect to the $\mathrm{C} 4-$ $\mathrm{C} 5-\mathrm{C} 6$ plane, while the skeletal structure of 2β is planar.
two fused cyclopentadienyl rings. One ring has a localized C2C3 double bond that is distinctly shorter than the others, and the shifted hydrogen atom is located on the C 4 carbon with significant sp^{3} character. In contrast, the other ring has $\mathrm{C}-\mathrm{C}$ bonds with similar bond lengths and is highly conjugated. The transformation from $2 \alpha^{*}$ to 2β is schematically illustrated as follows.

Figure 8 shows the calculated energies and schematic structures of $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$species along the reaction coordinate in going from $2 \alpha^{*}$ to 2β. We first focus on the structure of the $\mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}$ion obtained after deprotonation of COT. The full, rapid H / D exchange observed for $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$suggests that the carbon sites

Figure 8. Relative energies (300 K) and schematic structures of $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ species obtained from MP2/6-31+G*/MP2/6-31+G* calculations. The energy for $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \beta)$ is taken as the reference.
in the $\mathrm{C}_{8} \mathrm{H}_{8}$ neutral are almost equivalent and hence the $\mathrm{C}_{8} \mathrm{H}_{8}$ species obtained by protonation of 2α is most likely COT. This, in turn, suggests that the $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ion can have a similar eightmembered ring structure which is consistent with $2 \alpha^{*}$ or 2α. According to the MP2/6-31+G* calculations (Table 2), 2α is only $4.5 \mathrm{kcal} / \mathrm{mol}$ more stable than $2 \alpha^{*}$ while the barrier height from $2 \alpha^{*}$ to 2α is much larger ($25.3 \mathrm{kcal} / \mathrm{mol}$). Nevertheless, the anisotropy parameter observed in PES $(\beta=-0.55)^{7}$ revealed that the $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ion produced under similar conditions has a delocalized π-anionic configuration, ${ }^{24}$ indicating that the $\mathrm{C}_{8} \mathrm{H}_{7}{ }^{-}$ ion resulting from deprotonation of COT is 2α and not $2 \alpha^{*}$.

Our data indicate that only 2α is accessible by deprotonation of COT despite the relatively high barrier between $2 \alpha^{*}$ and $\mathbf{2} \alpha$. It is intriguing that this barrier is apparently surmounted in the nearly thermoneutral deprotonation reaction with $\mathrm{CH}_{3} \mathrm{O}^{-}(\mathrm{PA}$ $=380.5 \mathrm{kcal} / \mathrm{mol}$). A possible mechanism involves an isomerization of nascent $2 \alpha^{*}$ to 2α within the intermediate complex that is stabilized by an ion-dipole interaction or, more plausibly, a different bimolecular reaction path that bypasses the formation of $2 \alpha^{*}$ (eq 6).

Collision-induced isomerization of 2α to 2β is now discussed. The first activation barrier (TS2) is calculated to be $15.5 \mathrm{kcal} /$ $\mathrm{mol}(\sim 0.7 \mathrm{eV})$. The measured fraction of 2β in the flow tube

[^6]is almost independent of the reactant ion used in the source for deprotonation of $\mathrm{COT}\left[\mathrm{NH}_{2}{ }^{-}(\mathrm{PA}=403.7 \mathrm{kcal} / \mathrm{mol}), \mathrm{HO}^{-}\right.$ ($390.8 \mathrm{kcal} / \mathrm{mol}$), or $\mathrm{CH}_{3} \mathrm{O}^{-}(380.5 \mathrm{kcal} / \mathrm{mol})$]. The energy released in the deprotonation reaction with $\mathrm{NH}_{2}{ }^{-}$exceeds the TS2 energy by $\sim 7 \mathrm{kcal} / \mathrm{mol}$. Under the experimental conditions, however, it is not the reaction enthalpy but the collision energy that primarily determines the 2β fraction. Despite the multiple collisions inherent in the SIFT injection, the observed behavior in the conversion of 2α to 2β (Figure 2) is qualitatively consistent with the calculated barrier height. Once the first barrier (TS2) is surmounted, $\mathbf{2} \alpha$ is quickly transformed to $\mathbf{2} \beta$, the most stable form of $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$with a remarkably low heat of formation ($33.0 \mathrm{kcal} / \mathrm{mol}$, Table 1). ${ }^{27}$

The ion 2β can be viewed as the anion of fused cyclopentadienes. In fact, there are striking thermochemical similarities between 2β and cyclopentadienide ion $\left(\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}\right.$, Figure 3). The observed PA ($354.7 \mathrm{kcal} / \mathrm{mol}$) and EBE (1.9 eV) for $\mathbf{2} \beta$ are very similar to those for $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}(\mathrm{PA}=354.0 \mathrm{kcal} / \mathrm{mol}, \mathrm{EBE}=$ 1.786 eV). We also used semiempirical PM3 calculations to predict the $\operatorname{EBE}(2 \beta)$. The calculations reproduce the $\mathrm{EBE}\left(\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}\right)$ reasonably well $(1.74 \mathrm{eV})$, and the value for $\operatorname{EBE}(\boldsymbol{2} \beta)$ is likewise predicted to be 1.68 eV , which is consistent with the bracketing experiment (Table 1). The above observations support the proposed cyclopentadienyl-like structure for 2β.

The proposed [3.3.0] bicyclic structure is also consistent with the five H / D exchange reactions observed for 2β. The MP2/ $6-31+G^{*}$ calculations taking into account the zero-point energy (ZPE) and thermal energy (at 300 K) reveal the most stable structure for the deuterated $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{D}$ neutral to be $\mathbf{4 a}$, followed by $\mathbf{4 b}$ and $\mathbf{4 c}$ within $\sim 1 \mathrm{kcal} / \mathrm{mol}$ (eq 7). While deuteration into

2β

$\mathbf{4 a}-\mathbf{4 c}$ and successive deprotonation facilitates a total of five H/D exchanges, the sixth exchange would be less feasible because of the relative instability of $\mathbf{4 d}(\sim 1.6 \mathrm{kcal} / \mathrm{mol}$ higher in energy than $4 \mathbf{a}$) and the slower H/D exchanges via this species. Recent studies on the synthesis of dihydropentalenes reported isomeric structures $\mathbf{4 a}-\mathbf{4 d}$, with the $\mathbf{4 a}$ fulvene structure being the most stable at room temperature. ${ }^{28}$ The values for $\Delta H_{\mathrm{f}}(\mathbf{2} \beta)$ and $\mathrm{PA}(2 \beta)$ (Table 1) are combined to estimate the value for $\Delta H_{\mathrm{f}}(\mathbf{4 a})$ as $44.0 \pm 7.4 \mathrm{kcal} / \mathrm{mol}$, which agrees with an MNDO estimate of $50.8 \mathrm{kcal} / \mathrm{mol}$ by Meier et al. ${ }^{28 b}$

[^7]Other alternative structures of $\mathbf{2} \beta$ are discussed here. The [4.2.0] bicyclic $\mathrm{C}_{8} \mathrm{H}_{7}^{-}$ion (2 δ), which is the conjugate base of bicyclo[4.2.0]octa-1,3,5-triene (5; $\Delta H_{\mathrm{f}}=48.0 \mathrm{kcal} / \mathrm{mol}$), has only three exchangeable hydrogens and thus is ruled out as the structure of $\mathbf{2} \beta$.

The MO calculations also support this conclusion. We calculated the structures and energies of 2δ and its precursors TS4 and $2 \delta^{*}$.

The energies for the [4.2.0] species are always $20-30 \mathrm{kcal} /$ mol higher than those for the corresponding [3.3.0] species, $2 \beta^{*}$, TS3, and $\mathbf{2} \beta$ (Table 2). Furthermore, despite our computational effort, we find no [4.2.0]-oriented transition state that exists between 2α and $2 \delta^{*}$. The anions of styrene ($\mathbf{2} \epsilon^{*}$ and $\mathbf{2} \epsilon$) are found to be $7-9 \mathrm{kal} / \mathrm{mol}$ lower in energy than the corresponding ring-closed structures $2 \delta^{*}$ and 2δ.

However, the measured acidity of styrene ($391.0 \mathrm{kcal} / \mathrm{mol})^{29}$ clearly indicates that neither $\mathbf{2} \epsilon^{*}$ nor $\mathbf{2} \epsilon$ is the structure for $\mathbf{2} \beta$ ($\mathrm{PA}=354.7 \mathrm{kcal} / \mathrm{mol}$).

Finally, ring-opened structures derived from $\mathbf{2} \beta$ are calculated. No reasonable structures are found for substituted cyclopentadienide ion, and instead, substituted fulvenes ($\mathbf{2} \lambda, \mathbf{2} \mu^{*}$, and $\mathbf{2} \mu$) are obtained by $\mathrm{C}-\mathrm{C}$ bond scission of 2β (eq 11). These

species, however, are considerably higher in energy than $\mathbf{2} \beta$. It is also highly unlikely that these species behave like exact analogues of cyclopentadienide ion as ion 2β does.

Collision-induced isomerization of anions is relatively rare. Mechanisms of classical anionic rearrangements (Wittig and anionic Claisen rearrangements, ${ }^{30 \mathrm{a}-\mathrm{c}}$ anionic Beckmann rearrangements, ${ }^{30 \mathrm{~d}}$ benzil/benzilic acid rearrangement, ${ }^{30 \mathrm{e}}$ and enolate ion rearrangement ${ }^{30 f-\mathrm{h}}$) have been studied using collisional activation-CID detection type of instruments. A variable temperature flowing afterglow device has recently been used to measure activation energies and to characterize rearranged

[^8]products in the ring opening of substituted cyclopropyl anions. ${ }^{31}$ The [3.3.0] cyclization of 2α to 2β is not only a novel but a remarkable process as it contrasts with the thermal isomerization of isoelectronic COT neutral in which a Woodward-Hoffmann allowed, intramolecular cyclization to yield bicyclo[4.2.0]octatriene is preferred. Instead, the collision-induced [3.3.0] cyclization parallels a recent observation of a low-pressure, flash pyrolysis of COT neutral that leads to [3.3.0] dihydropentalenes via a biradical mechanism. ${ }^{28 a, b}$ The anion isomerization of 2α to 2β is driven by a different mechanism; if this process could be duplicated in solution, it would provide novel synthetic access to bicyclic ring systems.

Chemical Reactions of $\mathbf{C}_{\mathbf{8}} \mathbf{H}_{\boldsymbol{n}}{ }^{-}$Ions. Experiments indicate that ion $\mathbf{1}\left(\mathrm{COT}^{-}\right)$is stable against fragmentation, and that only electron detachment, presumably converting 1 to neutral COT, takes place upon collision with helium. The radical anion $\mathbf{1}$ is notably unreactive; only electron transfer to O_{2} and CS_{2} and proton transfer with strong acids were observed. The ion $\mathbf{1}$ does not even form an adduct with NO, a process that is common for open shell anions. This may be understood if one considers the π-anionic nature of $\mathbf{1}$ in which the radical electron is delocalized within the π-system. The ion $\mathbf{1}$ does not react with COS or CS_{2} presumably because of its low proton affinity; reactions with COS or CS_{2} have been observed for anions that are strongly basic. ${ }^{12,32}$

The radical anion $3\left(\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}\right)$is stable against fragmentation, with only electron detachment occurring upon collision with helium. The ion $\mathbf{3}$ is also relatively unreactive; the low proton affinity of $\mathbf{3}$ precludes reaction with CS_{2}, and only a very slow reaction was observed with COS. The absence of adduct formation with NO parallels the behavior of the radical anion of o-benzyne (1,2-dehydrobenzene) and contrasts with those of m - and p-benzynes. ${ }^{33}$ Thus, ion $\mathbf{3}$ is likely a π-anion with a 1,2 -dehydro-COT structure. In fact, a recent PES/MO study ${ }^{8}$ revealed that $\mathbf{3}$ is a planar ring with a delocalized π-anion structure similar to $\mathbf{1}$, except that it has a much shorter $\mathrm{C}-\mathrm{C}$ bond at the 1,2-position with a higher bond order. Stretching of the triple bond within an eight-membered ring was observed at $2185 \mathrm{~cm}^{-1} .^{8}$ Ion 3 exhibits a remarkable, moderately fast reaction with NO to form CN^{-}. A possible mechanism involves the cyclic addition of NO to the triple bond in 3 followed by rearrangements leading to the formation of CN^{-}, and presumably neutral products, 2,4,6-cycloheptatrien1 -one (tropone, 6) or benzene and carbon monoxide. The energetics for these product channels indicate that the reactions are highly exothermic $\left(\Delta H_{\mathrm{Rxn}}=-98\right.$ and $-114 \mathrm{kcal} / \mathrm{mol}$, respectively). Although a similar exothermic process is, in principle, possible for o-benzyne ($\Delta H_{\mathrm{Rxn}}=-117 \mathrm{kcal} / \mathrm{mol}$ for products of CN^{-}and cyclopentadienone), this reaction does not occur.
(30) (a) Eichinger, P. C. H.; Bowie, J. H.; Blumenthal, T. J. Org. Chem. 1986, 51, 5078-5082. (b) Eichinger, P. C. H.; Bowie, J. H.; Hayes, R. N. Ibid. 1987, 52, 5224-5228. (c) Eichinger, P. C. H.; Bowie, J. H. J. Chem. Soc., Perkin Trans. 2 1988, 497-506. (d) Adams, G. W.; Bowie, J. H. Rapid Commun. Mass Spectrom. 1990, 4, 275-276. (e) Hayes, R. N.; Eichinger, P. C. H.; Bowie, J. H. Ibid. 1990, 4, 283-284. (f) Eichinger, P. C. H.; Bowie, J. H. Org. Mass Spectrom. 1987, 22, 103-108. (g) Raftery, M. J.; Bowie, J. H. Aust. J. Chem. 1987, 40, 711-721. (h) Currie, G. J.; Stringer, M. B.; Bowie, J. H.; Holmes, J. L. Ibid. 1987, 40, 1365-1373.
(31) (a) Chou, P. K.; Kass, S. R. Org. Mass Spectrom. 1991, 26, 10391040. (b) Chou, P. K.; Dahlke, G. D.; Kass, S. R. J. Am. Chem. Soc. 1993, 115, 315-324.
(32) (a) DePuy, C. H.; Bierbaum, V. M. Tetrahedron Lett. 1981, 22, 5129-5130. (b) DePuy, C. H. Org. Mass Spectrom. 1985, 20, 556-559. (c) Lee, H. S.; DePuy, C. H.; Bierbaum, V. M. J. Am. Chem. Soc. 1996, 118, 5068-5073.
(33) Wenthold, P. G.; Hu, J.; Squires, R. R. J. Am. Chem. Soc. 1994, 116, 6961-6962.

Both ions $\mathbf{2 \alpha}$ and $\mathbf{2} \beta$ are π-anions and are not expected to form adducts with NO. Although adduct formation is not observed for 2β, sequential addition of NO was observed for 2α presumably because the bent allenic bond within the ring structure provides a reactive site at the central carbon which sustains the greatest strain.

This scheme rationalizes the observed sequential addition of up to two NO molecules and the significant signal loss of the parent ion. The monoadduct (7) is expected to have an EBE as small as does COT^{-}, and the reaction exothermicity can readily detach the electron to form a closed-shell neutral product, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}$ (9). A similar associative detachment is reported for 2,3-dehydrophenyl anion ${ }^{34}$ which can also yield a closed-shell neutral after detachment. Since the exothermicity is removed by release of an electron and not by collisional deactivation, the total rate constant does not depend on the helium pressure. A certain fraction of 7^{*}, which does not undergo associative detachment, can react with another NO to form a biadduct (8) that no longer is reactive. Competing formation of CN^{-}from $2 \alpha+\mathrm{NO}$ is also explained by a plausible mechanism that involves radical attack at the strained allenic carbon.

The hydrogenated tropone radical (10) and benzaldehyde radical (11) are calculated to be relatively stable $\left[\Delta H_{\mathrm{f}}=9.7\right.$ and -11.0
$\mathrm{kcal} / \mathrm{mol}$, respectively, at the PM3 level] owing to the delocalized radical electrons. The reaction enthalpies are estimated to be -81 and $-102 \mathrm{kcal} / \mathrm{mol}$, respectively.

Sulfur dioxide forms adducts with anions 2α and 2β. For the reaction with 2β, a single SO_{2} can bind at the anionic cyclopentadienyl site to form a stable product, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{2}{ }^{-}$. Adduct formation with 2α can initiate from addition of SO_{2} at the strained allenic carbon site (eq 15). The formation of a

biadduct for 2α and not for 2β suggests an intermolecularly stabilized covalent structure for the biadduct, although it is also possible that the biadduct is a cluster, with the second SO_{2} interacting with the sulfonate ion moiety of $\mathbf{1 2}$. The formation of $\mathrm{HSO}_{2}{ }^{-}$(and presumably $\mathrm{C}_{8} \mathrm{H}_{6}$) from 2α may be surprising because the calculated value for the hydride affinity of $\mathrm{C}_{8} \mathrm{H}_{6}$ (3) $(76 \pm 9 \mathrm{kcal} / \mathrm{mol}$, from Table 1) is greater than that for $\mathrm{SO}_{2}(63 \mathrm{kcal} / \mathrm{mol}) .{ }^{11}$ This suggests that an isomerized, lower energy $\mathrm{C}_{8} \mathrm{H}_{6}$ product must be formed from this reaction. The formation of $\mathrm{HSO}_{2}{ }^{-}$cannot occur for 2β for which the reaction enthalpy for the product pair with $\mathrm{HSO}_{2}{ }^{-}$and presumably pentalene is estimated to be significantly endothermic.

The reaction of 2α with COS and CS_{2} proceeds via both sulfur atom abstraction and adduct formation. Sulfur atom abstraction from COS or CS_{2} has been observed for carbanions that are highly basic, e.g., $\mathrm{N} \equiv \mathrm{C}-\mathrm{CH}_{2}{ }^{-}$(PA $=372.8 \mathrm{kcal} /$ $\mathrm{mol}),{ }^{32 \mathrm{a}} \mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}^{-}(380.5 \mathrm{kcal} / \mathrm{mol}),{ }^{32 \mathrm{~b}}$ quadricyclanide ion ($403.0 \mathrm{kcal} / \mathrm{mol}$) ${ }^{32 \mathrm{c}}$ and cubyl anion ($404 \mathrm{kcal} / \mathrm{mol}$). ${ }^{12}$ This accounts for the absence of sulfur abstraction reactions for 2β. For the reaction of 2α with CS_{2}, abstraction of sulfur $\left[\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~S}^{-}\right.$ (13), 72%] and the consecutive elimination of HCCS^{-}(7\%) account for the majority (79%) of the reaction products (eq 16). With a PM3-calculated value for $\Delta H_{\mathrm{f}}\left(\mathrm{HCCS}^{-}\right)$of $-13.5 \mathrm{kcal} /$ mol, the reaction enthalpy for the elimination channel is estimated to be exothermic by $\sim 45 \mathrm{kcal} / \mathrm{mol}$. Elimination of HS^{-}from $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~S}^{-}$is not feasible on energetic grounds. Adduct formation and the consecutive elimination of HS^{-}are minor processes with CS_{2} (eq 17). Once the adduct is formed, however, this reaction is quite exothermic and a large fraction of nascent adducts undergo dissociation to yield $\mathrm{HS}^{-}(18 \%)$, with only 3% remaining as the adduct (14). The reactions of 2α with COS can proceed via similar mechanisms but with a significantly different product distribution. The overall reaction rate constant is also smaller for COS than for CS_{2}. Formation of adduct $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{COS}^{-}, 60 \%\right)$ and the consecutive elimination of $\mathrm{HS}^{-}(31 \%)$ account for the majority (91%) of the reaction. The nascent adduct with COS is less internally excited than that with CS_{2}, thereby potentially leading to more stabilization rather than further dissociation. Sulfur abstraction $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~S}^{-}, 9 \%\right)$ is unexpectedly slow with COS, although this reaction is generally more exothermic than that with CS_{2} because of the elimination of CO instead of CS. This behavior parallels that observed for the reaction of quadricyclanide ion with CS_{2} and COS, ${ }^{32 \mathrm{c}}$ suggesting a kinetic barrier to sulfur abstraction from COS.

[^9]

Conclusions

The structures, energetics, and chemical reactions of COT^{-} (1), $\mathrm{C}_{8} \mathrm{H}_{7}^{-}(2 \alpha), \mathrm{C}_{8} \mathrm{H}_{7}^{-}(\mathbf{2} \beta)$, and $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\mathbf{3})$ were studied using the SIFT technique and MO calculations. The adiabatic electron affinity of COT was unambiguously determined as 0.55 ± 0.02 eV . Heats of formation for the anions and related neutrals, along with the $\mathrm{C}-\mathrm{H}$ bond dissociation energies for the conjugate acids, were also determined from measurements of proton affinities and electron binding energies.

Collisional excitation of the eight-membered ring species $\mathbf{1}$, $\mathbf{2} \alpha$, and $\mathbf{3}$ induces different reactions. While π-radical anions $\mathbf{1}$ and $\mathbf{3}$ undergo electron detachment upon collision with helium, anion 2α undergoes a novel isomerization to a different anionic species, $\boldsymbol{2} \beta$, at relatively low collision energies. At higher energies, loss of hydrogen atom to yield the $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\gamma)$ species, which has a reactivity distinctly different from that of $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}$ (3), was also observed. The anion 2α is not a vinylic anion but a novel, π-electronic system with a cyclic allene structure in a pentadienyl moiety. The anion 2β is a relatively stable [3.3.0] bicyclic species ($\left.\Delta H_{\mathrm{f}}=33.0 \mathrm{kcal} / \mathrm{mol}\right)$ with EBE and PA very similar to those for cyclopentadienide ion.

The high proton affinity, high heat of formation, and strained cyclic allene structure in 2α give rise to a variety of chemical reactions, e.g., sulfur abstraction and adduct formation with CS_{2} and COS, and sequential adduct formation with NO and SO_{2}. Other anions are relatively unreactive. However, anion $\mathbf{3}$ reacts with NO at a moderate rate to yield CN^{-}.

Collision-induced isomerization of 2α to 2β with transannular bond formation is a remarkable process. Duplication of this isomerization process in solution would provide entry into bicyclic ring systems that pose significant synthetic challenges. The structure of $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\gamma)$ is particularly intriguing; this species may be the radical anion of pentalene if it retains the skeletal structure of 2β. Characterization of this species is currently underway.

Acknowledgment. We gratefully acknowledge support of this work by National Science Foundation Grants CHE-9421747 and CHE-9421756. We also thank Dr. Paul G. Wenthold for helpful discussions.
JA9726280

[^0]: (1) Fray, G. I.; Saxton, R. G. The Chemistry of Cyclooctatetraene and Its Derivatives; Cambridge University Press: New York, 1978.
 (2) (a) Paquette, L. A. Tetrahedron 1975, 31, 2855-2883. (b) Paquette, L. A. Pure Appl. Chem. 1982, 54, 987-1004. (c) Paquette, L. A. Acc. Chem. Res. 1993, 26, 57-62.
 (3) Wentworth, W. E.; Ristau, W. J. Phys. Chem. 1969, 73, 2126-2133.
 (4) Gygax, R.; McPeters, H. L.; Brauman, J. I. J. Am. Chem. Soc. 1979, 101, 2567-2570.

[^1]: (5) Wenthold, P. G.; Hrovat, D. A.; Borden, W. T.; Lineberger, W. C. Science 1996, 272, 1456-1459.
 (6) Hammons, J. H.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 1991, 113, 4500- 4505.
 (7) Kato, S.; Lee, H. S.; Gareyev, R.; Wenthold, P. G.; Lineberger, W. C.; DePuy, C. H.; Bierbaum, V. M. J. Am. Chem. Soc. 1997, 119, 78637864.
 (8) Wenthold, P. G.; Lineberger, W. C. J. Am. Chem. Soc. 1997, 119, 7772-7777.

[^2]: (10) Travers, M. J.; Cowles, D. C.; Ellison, G. B. Chem. Phys. Lett. 1989, 164, 449-455.
 (11) All thermochemical data, unless otherwise noted, come from the following: Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. No. 1. NIST Negative Ion Energetics Database (Version 3.01, 1993); NIST Standard Reference Database 19B.

[^3]: (12) Hare, M.; Emrick, T.; Eaton, P. E.; Kass, S. R. J. Am. Chem. Soc. 1997, 119, 237-238.
 (13) For example, $\mathrm{C}_{8} \mathrm{H}_{6}^{-}(3)$ abstracts a proton from $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CSH}$ whereas $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{-}(\gamma)$ does not.
 (14) Kato, S.; et al. Unpublished work.

[^4]: (15) The 2β anion abstracts a proton from $\mathrm{H}_{2} \mathrm{~S}$ whereas the reaction of 2β with COS does not yield HS^{-}(see the later section for 2β), indicating that COS contains a negligible amount of an $\mathrm{H}_{2} \mathrm{~S}$ impurity. Thus, the HS^{-} observed in the reaction of $\mathbf{3}+$ COS is presumably a real reaction product.
 (16) The experimental uncertainty for branching ratios of 10% or more is $\pm 5 \%$. Corrections have not been made for mass discrimination.
 (17) A different product distribution was observed for the $2 \alpha+\mathrm{CS}_{2}$ reaction in an FTMS experiment; i.e., $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~S}^{-}$and HCS_{2}^{-}were formed in $\mathrm{a} \sim 10: 1$ ratio (ref 12).

[^5]: ${ }^{a}$ See the text and Figures $6-8$ for the structures designated by the symbols. ${ }^{b}$ MP2/6-31+G*//MP2/6-31+G* calculations. ZPE and thermal energy (300 K) corrected. ${ }^{c}$ Semiempirical PM3 calculations. ${ }^{d}$ Calculations not converged. ${ }^{e}$ Single-point MP2/6-31+G*//HF/3-21+G* calculations. ZPE and thermal energy (300 K) corrected. ${ }^{f}$ Reference energy.

[^6]: (24) Similar negative values for β are reported for π anions such as allyl (ref 25) and benzyl (ref 26) anions whereas vinylic anions such as phenyl anion (ref 26) have positive values for β.

[^7]: (25) Wenthold, P. G.; Polak, M. L.; Lineberger, W. C. J. Phys. Chem. 1996, 100, 6920-6926.
 (26) Gunion, R. F.; Gilles, M. K.; Polak, M. L.; Lineberger, W. C. Int. J. Mass Spectrom. Ion Processes 1992, 117, 601-620.
 (27) The heat of formation of 2β is estimated as $34.4 \mathrm{kcal} / \mathrm{mol}$ using PM3 calculations, in good agreement with the value in Table 1.
 (28) (a) Meier, H.; Pauli, A.; Kochhan, P. Synthesis 1987, 573-574. (b) Meier, H.; Pauli, A.; Kolshorn, H.; Kochhan, P. Chem. Ber. 1987, 120, 1607-1610. (c) Pauli, A.; Kolshorn, H.; Meier, H. Ibid. 1987, 120, 16111616.

[^8]: (29) Meot-Ner (Mautner), M.; Kafafi, S. A. J. Am. Chem. Soc. 1988, 110, 6297-6303.

[^9]: (34) Hu, J.; Squires, R. R. J. Am. Chem. Soc. 1996, 118, 5816-5817.

